Guest Post Written by: Sean BrownArea Director, EMEA @ SaltStack

  • Automation is a necessity to deliver compliance and configuration management and for all enterprises operating at scale
  • Many existing management platforms were built for a previous generation of IT and cannot scale nor flex to cloud native operations
  • An opportunity exists to reduce cost and risk by considering bi-directional, closed loop event-based automation for configuration management and SecOps compliance

Download your own copy of the SaltStack SecOps white paper HERE.

Whether you need central heating or air conditioning, you’ll be familiar with the process of defining and setting a desired state, in this instance setting the temperature.  The sensors within the system then provide constant feedback and the desired state is maintained until the system receives a new target state.  More comprehensive systems allow for more finely grained defined states to be set, perhaps by room or by time of day. 

Platforms delivering change and configuration management in IT offer similar capabilities albeit with considerably more variables to be managed and most likely involving several people with responsibility for the service level management of the platforms in operation.  How desired state is achieved and maintained varies by platform and approach.

Some platforms can define a target state and deploy this to a system under management, it is a simplex operation – “top down”.  Once a target state is set there is no ability to receive feedback as this platform has no monitoring capability.   The target state deployment can be scheduled, to re-instantiate the target state, perhaps at an hourly, daily or weekly interval but between intervals there is no visibility into the state of the system under management. 

“75% of organizations still don’t automate server or application provisioning” [Gartner]

This is analogous to setting your room temperature at the radiator and having no knowledge of the changing weather conditions, time of day, level of occupancy in the room or knowledge of the window that someone unexpectantly left open.

Other platforms can offer more capability.  A target state can be defined, deployed and another, separate platform can be deployed to monitor state.  Many of the security compliance propositions available today work in this way, deploying agents to the systems and then reporting back when the system under management deviates from target state (or compliant state in this instance).

Average cost of a data breach in 2018 was $3.16m and the likelihood of a recurring breach over the next two years: 27.9%  Without automation, estimated cost increases to $4.43 million, a $1.55 million net cost difference. (IBM/Ponemon)

At this point two teams work together, one to report the compliance drift and the other tasked with remediating that drift back to complaint state.  It works but requires integration of both platforms and processes, resulting in additional cost, risk and operational inertia.  When the systems under management span multiple data-centres, technologies, geographies and operating domains (on premise, hosted, public cloud), more teams have to be involved resulting in more risk, inertia and ultimately cost.

 

 

Of course, the analogy of domestic heating systems and complex enterprise IT is limited. A closer comparison may be found in aviation. Modern airliners are a collection of systems and sensors, operating in concert with each other utilising real-time feedback and automation. The systems are too complicated for any individual pilot to manage and whereas initially other aircrew were added to share the workload, the last 30 years have seen the movement of many responsibilities to automated control logic capable of delivering a safe, repeatable and predictable outcome (destination reached) irrespective of the changing flight conditions (weight, balance, trim, air speed, fuel usage, wind direction, noise regulation, schedule).

IT will consume 20% of all generated electricity by 2025.  A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

It may be argued that IT is as complex (micro-services, containers, VM’s, public, private, hosted, Linux, Windows, legacy), equally regulated (PCI, CIS, DISA-STIG etc.) and more environmentally conscientious than ever before. 

For this reason, enterprises are looking to optimise how they manage IT and the systems they have deployed in the past for this purpose are now too brittle to successfully incorporate more modern design patterns such as cloud and containers, or too expensive to scale to the 100k plus individual management targets many mid-size and enterprise.

A solution may be more integration.  For example, the integration of a dedicated monitoring system alongside an agent-based compliance reporting system, a configuration management platform and a service level management/ticketing system that together allow the enterprise to define, target, deploy, monitor, react and report.  However, interdependent integration has associated costs and risks that many budget conscious businesses would rather avoid. 

This pattern is playing out in the public cloud today whereby enterprises are finding that to support AWS, Azure and GCP (for example) along with their associated API’s and licensing is a false economy and a more one-stop-shop approach is economic reality. 

Enterprise want to set their own direction.  Indeed, this is commercial necessity in both competitive market and in public sector where organisations are seeking any combination of differentiation, cost optimization or risk reduction. 

SaltStack addresses the customer needs stated above and more.  Designed as an extensible, massively scalable and high-performance remote execution engine, SaltStack provides event-based automation capabilities that address IT operations, DevOps and SecOps concerns.  SaltStack can help customers achieve target state using either declarative or imperative approaches and utilises an asynchronous message bus architecture to deliver change and configuration instructions at incredible speed and scale.

The SaltStack platform also includes the capability to deploy an agent-based monitoring solution (SaltStack Beacons) that utilise the same event bus to transmit messages back to the core, be they simple notifications of a successful system change/package deployment or something more time or operations risk sensitive such as a service being enabled when it should be disabled -telnet being turned on when it should be turned off for example. Being extensible means that customers can extend or build their own beacon monitors to build a unique insight, command and control capability for their extended estate. 

This capability adds orchestration to automation, resulting in a platform that can interpret environmental change (e.g. file, disk, network, service, login, CPU utilisation, system operating temperature) and can react as required, be it fully autonomously or as part of a service chain process.  When applied to the SecOps use case the ability of an enterprise to deploy a target complaint state to their estate and then have SaltStack keep that estate in target compliant state through self-healing, automated remediation.  No third-party monitoring tools.  No third-party compliance reporting tools.  No integration cost and undeniably less risk.

In March 2019 SaltStack will be launching a dedicated SecOps compliance service.  Utilising the platform described above to deploy target compliance profiles for Windows and Linux systems at launch, this will incorporate the delivery of pre-built, tested compliance profiles for CIS, DISA-STIG and NIST targets as well as dedicated SaltStack beacons for compliance reporting and alerting. 

If a system under management moves out of target compliance the CISO and ITOps team will know, in real-time, and will have the ability to remediate back to target compliant state. Assured compliance at scale.  Just another use-case for SaltStack.

To receive the SaltStack SecOps white paper, please tell us a little about yourself: